
Resit Exam — Functional Analysis (WIFA–08)

Tuesday 26 June 2018, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (7 + 5 + 10 + 3 = 25 points)

Define the following linear space:

X =
{
x = (x1, x2, x3, . . . ) : xk ∈ K, ‖x‖X < ∞

}
, ‖x‖X = |x1|+

∞∑

k=1

|xk+1 − xk|.

(a) Prove that ‖ · ‖X is a norm on X .

(b) Recall the following Banach space from the lecture notes:

ℓ1 =
{
x = (x1, x2, x3, . . . ) : xk ∈ K, ‖x‖1 < ∞

}
, ‖x‖1 =

∞∑

k=1

|xk|.

Consider the linear map:

T : X → ℓ1, (x1, x2, x3, . . . ) 7→ (x1, x2 − x1, x3 − x2, . . . ).

Show that T is bijective and ‖Tx‖1 = ‖x‖X for all x ∈ X .

(c) Prove that (X, ‖ · ‖X) is a Banach space using that (ℓ1, ‖ · ‖1) is a Banach space.

(d) Show that the norms ‖ · ‖X and ‖ · ‖1 are not equivalent on the space ℓ1.

Problem 2 (6 + 4 + 4 + 4 + 7 = 25 points)

Consider the space X = C([0, 1],K) with norm ‖f‖∞ = supx∈[0,1] |f(x)| and the
following linear operator:

T : X → X, Tf(x) =

∫ 1

0

ex−tf(t) dt.

(a) Show that T is compact.

(b) Show that 0 ∈ σ(T ).

(c) Assume λ 6= 0. Show that if Tf − λf = g, then f = αex − g/λ for some α ∈ K.

(d) Compute (T − λ)−1g by computing the constant α in terms of g and λ.

(e) Determine ρ(T ) and hence σ(T ).
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Problem 3 (5 + 3 + 7 + 5 = 20 points)

(a) Formulate Baire’s theorem for metric spaces.

Let ‖ · ‖ be any norm on the space of finitely supported sequences:

S = {x = (x1, x2, x3, . . . ) : xk ∈ K, there exists Nx ∈ N s.t. xk = 0 for k ≥ Nx}.

Prove the following statements:

(b) Sn = {x ∈ S : xk = 0 for all k ≥ n} is closed for each n ∈ N;

(c) Sn is nowhere dense for each n ∈ N;

(d) S is not a Banach space.

Problem 4 (4 + 6 = 10 points)

Let X be a Hilbert space and let V ⊂ X be a subset.

(a) For v ∈ V define the linear map fv : X → K by fv(x) = (x, v). Show that

‖fv‖ = ‖v‖.

(b) Assume that for each x ∈ X there exists a constant Mx ≥ 0 such that

|(v, x)| ≤ Mx for all v ∈ V.

Use the uniform boundedness principle to prove that the set V is bounded.

Problem 5 (4 + 6 = 10 points)

Let X be a normed linear space and let x ∈ X . Define the map

Fx : X ′ → K, Fx(f) = f(x), f ∈ X ′,

and define the map J : X → X ′′ by J(x) = Fx.

(a) Prove that Fx : X ′ → K is linear and that ‖Fx‖ = ‖x‖.

(b) Assume that X is not a Banach space. Explain how the map J can be used to
construct a completion of X .

End of test (90 points)
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Solution of problem 1 (7 + 5 + 10 + 3 = 25 points)

(a) It is clear that ‖x‖X ≥ 0 for any x ∈ X . If ‖x‖X = 0, then

|x1| = 0 and |xk+1 − xk| = 0 for all k ∈ N,

which implies that xk = 0 for all k ∈ N so that x = 0.
(2 points)

For λ ∈ K and x ∈ X we have λx = (λx1, λx2, . . . ) so that

‖λx‖X = |λx1|+
∞∑

k=1

|λ(xk+1 − xk)| = |λ||x1|+ |λ|
∞∑

k=1

|xk+1 − xk| = |λ|‖x‖X .

(2 points)

For x, y ∈ X we have x+ y = (x1 + y1, x2 + y2, . . . ) so that

‖x+ y‖X = |x1 + y1|+
∞∑

k=1

|(xk+1 − xk) + (yk+1 − yk)|

≤ |x1|+ |y1|+
∞∑

k=1

(
|xk+1 − xk|+ |yk+1 − yk|

)

= |x1|+ |y1|+
∞∑

k=1

|xk+1 − xk|+
∞∑

k=1

|yk+1 − yk|

= ‖x‖X + ‖y‖X .

(3 points)

(b) If Tx = 0, then x1 = 0 and xk+1 − xk = 0 for all k ∈ N, which implies that
xk = 0 for all k ∈ N so that x = 0. This shows that T is injective.
(2 points)

Let y = (y1, y2, . . . ) ∈ ℓ1 and set x = (x1, x2, . . . ) by xk = y1 + · · · + yk, then
Tx = y and

‖x‖X = |x1|+
∞∑

k=1

|xk+1 − xk| = |y1|+
∞∑

k=1

|yk+1| = ‖y‖1 < ∞,

which shows that x ∈ X . Therefore, T is surjective. The equality ‖Tx‖1 = ‖x‖X
for all x ∈ X is trivial.
(3 points)

(c) Let xn be a Cauchy sequence in (X, ‖ · ‖X) and set yn = Txn. Let ǫ > 0 be
arbitrary, then there exists N ∈ N such that

m,n ≥ N ⇒ ‖yn − ym‖1 = ‖T (xn − xm)‖1 = ‖xn − xm‖X ≤ ǫ,

which shows that yn is a Cauchy sequence in (ℓ1, ‖ · ‖1).
(4 points)
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Since (ℓ1, ‖ · ‖1) is complete there exists y ∈ ℓ1 such that ‖yn − y‖1 → 0 as
n → ∞. Now let x = T−1y, then since T−1 is also isometric we have

‖xn − x‖X = ‖T−1(yn − y)‖X = ‖yn − y‖1 → 0.

(6 points)

(d) Consider the sequence xn = (1, 1
2
, 1
3
, . . . , 1

n
, 0, 0, . . . ). On the one hand we have

‖xn‖1 =
n∑

k=1

1

k
→ ∞ as n → ∞.

On the other hand we have

‖xn‖X = 1 +

∣∣∣∣
1

2
− 1

∣∣∣∣+
∣∣∣∣
1

3
−

1

2

∣∣∣∣ + · · ·+

∣∣∣∣
1

n
−

1

n− 1

∣∣∣∣+
∣∣∣∣0−

1

n

∣∣∣∣ = 2.

Therefore, there is no constant C > 0 such that ‖x‖1 ≤ C‖x‖X for all x ∈ ℓ1.
(3 points)
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Solution of problem 2 (6 + 4 + 4 + 4 + 7 = 25 points)

(a) Solution 1. For all x ∈ [0, 1] we have that

|Tf(x)| =

∣∣∣∣
∫ 1

0

ex−tf(t) dt

∣∣∣∣ ≤
∫ 1

0

ex−t|f(t)| dt ≤ ‖f‖∞

∫ 1

0

ex−t dt = ‖f‖∞ex(1−e−1).

Taking the supremum over all x ∈ [0, 1] gives

‖Tf‖∞ = sup
x∈[0,1]

|Tf(x)| ≤ (e− 1)‖f‖∞,

which shows that T is a bounded operator.
(3 points)

Also note that for any f ∈ X we have Tf ∈ span {ex}, which shows that
dim ranT = 1. Together with the boundedness of T this implies that T is a
compact operator.
(3 points)

Solution 2. Recall the following theorem from the lecture notes: if K : [a, b] ×
[a, b] → K is a continuous function, then the Fredholm operator

T : X → X, Tf(x) =

∫ b

a

K(x, t)f(t) dt

is a compact operator. Clearly, the function K(x, t) = ex−t satisfies the hypo-
thesis of this theorem.
(6 points)

(b) Solution 1. Since T is compact and X is infinite-dimensional a theorem of the
lecture notes guarantees that 0 ∈ σ(T ).
(4 points)

Solution 2. Since dim ranT = 1 and X is infinite-dimensional we have that
ranT is not dense in X . This means that 0 /∈ ρ(T ), or, equivalently, 0 ∈ σ(T ).
(4 points)

Solution 3. Let f ∈ X be nontrivial and satisfy
∫ 1

0
f(t) dt = 0. For example, let

f(x) = x− 1
2
. Then the function g(x) = exf(x) belongs to ker T . This implies

that 0 ∈ σp(T ) ⊂ σ(T ).
(4 points)

(c) Note that for any f we have that Tf = βex where β =
∫ 1

0
e−tf(t) dt is a constant

depending on f . If Tf − λf = g, then f = Tf/λ− g/λ and f is necessarily of
the form f = αex − g/λ, where α = β/λ.
(4 points)

(d) Computing f = (T − λ)−1g means finding f ∈ X such that Tf − λf = g. Part
(c) implies that there exists a constant α ∈ K such that f(x) = αex − g(x)/λ.
In this case the equation Tf − λf = g reads as

∫ 1

0

ex−t

(
αet −

g(t)

λ

)
dt− λαex + g(x) = g(x),
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or, equivalently,

α = −
1

λ(λ− 1)

∫ 1

0

e−tg(t) dt.

This gives

(T − λ)−1g = −
1

λ
g(x)−

1

λ(λ− 1)

∫ 1

0

ex−tg(t) dt.

(4 points)

(e) Note that for λ /∈ {0, 1} the operator

Sλ = −
1

λ
−

1

λ(λ− 1)
T

is well-defined and bounded since it is a linear combination of two bounded
operators (namely the identity and T ). A straightforward computation shows
that

(T − λ)Sλ = Sλ(T − λ) = I,

which means that (T − λ)−1 = Sλ ∈ B(X) for all λ /∈ {0, 1}. This implies
K \ {0, 1} ⊂ ρ(T ).
(5 points)

Since {0, 1} ⊂ σ(T ) we have in fact that ρ(T ) = K \ {0, 1} and σ(T ) = {0, 1}.
(2 points)
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Solution of problem 3 (5 + 3 + 7 + 5 = 20 points)

(a) Alternative 1. Let X be a complete metric space and let O ⊂ X be nonempty
and open. Then O is nonmeager.
(5 points)

Alternative 2. A complete metric space cannot be written as the countable
union of nowhere dense subsets.
(5 points)

(b) Note that Sn = {x ∈ S : xk = 0 for all k ≥ n} is a finite-dimensional subspace
of the normed linear space S. This implies that Sn is closed.
(3 points)

(c) We need to prove that int Sn = ∅, or, equivalently, since Sn is closed, that
int Sn = ∅.

(2 points)

If x ∈ int Sn then there exists ε > 0 such that

{y ∈ S : ‖y − x‖ < ε} ⊂ Sn.

Let z ∈ S be nonzero and define z̃ = x+ 1
2
εz/‖z‖ then

‖z̃ − x‖ = 1
2
ε,

which implies that z̃ ∈ Sn. In turn, this implies that

z =
2‖z‖

ε
(z̃ − x) ∈ Sn

so that S = Sn, which is a contradiction. Hence, int Sn = ∅.

(5 points)

(d) If S is a Banach space, then it is also a complete metric space. Since

S =

∞⋃

n=1

Sn

it would follow from Baire’s theorem that at least one of the sets Sn is not

nowhere dense. This contradicts the conclusion of part (c). Hence, we conclude
that S is not a Banach space.
(5 points)
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Solution of problem 4 (4 + 6 = 10 points)

(a) For x ∈ X the Cauchy-Schwarz inequality gives |fv(x)| = |(x, v)| ≤ ‖x‖‖v‖,
which implies that

sup
x 6=0

|fv(x)|

‖x‖
≤ ‖v‖.

(3 points)

For x = v we have
|fv(x)|

‖x‖
=

|(v, v)|

‖v‖
= ‖v‖.

Hence, ‖fv‖ = ‖v‖.
(1 point)

(b) For any x ∈ X there exists a constant Mx ≥ 0 such that

|fv(x)| = |(x, v)| = |(v, x)| ≤ Mx,

which implies that
sup
v∈V

|fv(x)| < ∞ for all x ∈ X.

(3 points)

By part (a) and the uniform boundedness principle we have

sup
v∈V

‖v‖ = sup
v∈V

‖fv‖ < ∞,

which implies that the set V is bounded.
(3 points)
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Problem 5 (4 + 6 = 10 points)

(a) For f, g ∈ X ′ and λ, µ ∈ K we have

Fx(λf + µg) = (λf + µg)(x) = λf(x) + µg(x) = λFx(f) + µFx(g),

which shows that Fx : X ′ → K is a linear map.
(2 points)

We have

‖Fx‖ = sup
f∈X′,f 6=0

|Fx(f)|

‖f‖
= sup

f∈X′,f 6=0

|f(x)|

‖f‖
= ‖x‖,

where the last equality is a consequence of the Hahn-Banach theorem.
(2 points)

(b) The operator J : X → X ′′ is an isometry and hence injective. This means that

J(X) is a copy of X inside X ′′. Set X̃ = J(X). Since X ′′ is a Banach space

and X̃ is closed in X ′′ it follows that X̃ is a Banach space. If xn is a Cauchy
sequence in X , then Jxn is a Cauchy sequence in X̃ (since J is isometric) and
hence convergent. In this way, every Cauchy sequence in X has a limit in the
larger space X̃ and hence the latter space can be considered as a completion of
X .
(6 points)
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