Resit Exam - Functional Analysis (WIFA-08)

Tuesday 26 June 2018, 9.00h-12.00h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.

Problem $1(7+5+10+3=25$ points $)$

Define the following linear space:

$$
X=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{k} \in \mathbb{K},\|x\|_{X}<\infty\right\}, \quad\|x\|_{X}=\left|x_{1}\right|+\sum_{k=1}^{\infty}\left|x_{k+1}-x_{k}\right| .
$$

(a) Prove that $\|\cdot\|_{X}$ is a norm on X.
(b) Recall the following Banach space from the lecture notes:

$$
\ell^{1}=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{k} \in \mathbb{K},\|x\|_{1}<\infty\right\}, \quad\|x\|_{1}=\sum_{k=1}^{\infty}\left|x_{k}\right| .
$$

Consider the linear map:

$$
T: X \rightarrow \ell^{1}, \quad\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}, \ldots\right) .
$$

Show that T is bijective and $\|T x\|_{1}=\|x\|_{X}$ for all $x \in X$.
(c) Prove that $\left(X,\|\cdot\|_{X}\right)$ is a Banach space using that $\left(\ell^{1},\|\cdot\|_{1}\right)$ is a Banach space.
(d) Show that the norms $\|\cdot\|_{X}$ and $\|\cdot\|_{1}$ are not equivalent on the space ℓ^{1}.

Problem $2(6+4+4+4+7=25$ points $)$

Consider the space $X=\mathcal{C}([0,1], \mathbb{K})$ with norm $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$ and the following linear operator:

$$
T: X \rightarrow X, \quad T f(x)=\int_{0}^{1} e^{x-t} f(t) d t
$$

(a) Show that T is compact.
(b) Show that $0 \in \sigma(T)$.
(c) Assume $\lambda \neq 0$. Show that if $T f-\lambda f=g$, then $f=\alpha e^{x}-g / \lambda$ for some $\alpha \in \mathbb{K}$.
(d) Compute $(T-\lambda)^{-1} g$ by computing the constant α in terms of g and λ.
(e) Determine $\rho(T)$ and hence $\sigma(T)$.

Problem $3(5+3+7+5=20$ points $)$
(a) Formulate Baire's theorem for metric spaces.

Let $\|\cdot\|$ be any norm on the space of finitely supported sequences:
$\mathcal{S}=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{k} \in \mathbb{K}\right.$, there exists $N_{x} \in \mathbb{N}$ s.t. $x_{k}=0$ for $\left.k \geq N_{x}\right\}$.
Prove the following statements:
(b) $\mathcal{S}_{n}=\left\{x \in \mathcal{S}: x_{k}=0\right.$ for all $\left.k \geq n\right\}$ is closed for each $n \in \mathbb{N}$;
(c) \mathcal{S}_{n} is nowhere dense for each $n \in \mathbb{N}$;
(d) \mathcal{S} is not a Banach space.

Problem $4(4+6=10$ points $)$
Let X be a Hilbert space and let $V \subset X$ be a subset.
(a) For $v \in V$ define the linear map $f_{v}: X \rightarrow \mathbb{K}$ by $f_{v}(x)=(x, v)$. Show that

$$
\left\|f_{v}\right\|=\|v\| .
$$

(b) Assume that for each $x \in X$ there exists a constant $M_{x} \geq 0$ such that

$$
|(v, x)| \leq M_{x} \quad \text { for all } v \in V .
$$

Use the uniform boundedness principle to prove that the set V is bounded.

Problem 5 ($4+6=10$ points $)$
Let X be a normed linear space and let $x \in X$. Define the map

$$
F_{x}: X^{\prime} \rightarrow \mathbb{K}, \quad F_{x}(f)=f(x), \quad f \in X^{\prime}
$$

and define the map $J: X \rightarrow X^{\prime \prime}$ by $J(x)=F_{x}$.
(a) Prove that $F_{x}: X^{\prime} \rightarrow \mathbb{K}$ is linear and that $\left\|F_{x}\right\|=\|x\|$.
(b) Assume that X is not a Banach space. Explain how the map J can be used to construct a completion of X.

End of test (90 points)

Solution of problem $1(7+5+10+3=25$ points $)$
(a) It is clear that $\|x\|_{X} \geq 0$ for any $x \in X$. If $\|x\|_{X}=0$, then

$$
\left|x_{1}\right|=0 \quad \text { and } \quad\left|x_{k+1}-x_{k}\right|=0 \quad \text { for all } k \in \mathbb{N},
$$

which implies that $x_{k}=0$ for all $k \in \mathbb{N}$ so that $x=0$.

(2 points)

For $\lambda \in \mathbb{K}$ and $x \in X$ we have $\lambda x=\left(\lambda x_{1}, \lambda x_{2}, \ldots\right)$ so that

$$
\|\lambda x\|_{X}=\left|\lambda x_{1}\right|+\sum_{k=1}^{\infty}\left|\lambda\left(x_{k+1}-x_{k}\right)\right|=|\lambda|\left|x_{1}\right|+|\lambda| \sum_{k=1}^{\infty}\left|x_{k+1}-x_{k}\right|=|\lambda|\|x\|_{X} .
$$

(2 points)

For $x, y \in X$ we have $x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right)$ so that

$$
\begin{aligned}
\|x+y\|_{X} & =\left|x_{1}+y_{1}\right|+\sum_{k=1}^{\infty}\left|\left(x_{k+1}-x_{k}\right)+\left(y_{k+1}-y_{k}\right)\right| \\
& \leq\left|x_{1}\right|+\left|y_{1}\right|+\sum_{k=1}^{\infty}\left(\left|x_{k+1}-x_{k}\right|+\left|y_{k+1}-y_{k}\right|\right) \\
& =\left|x_{1}\right|+\left|y_{1}\right|+\sum_{k=1}^{\infty}\left|x_{k+1}-x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k+1}-y_{k}\right| \\
& =\|x\|_{X}+\|y\|_{X} .
\end{aligned}
$$

(3 points)

(b) If $T x=0$, then $x_{1}=0$ and $x_{k+1}-x_{k}=0$ for all $k \in \mathbb{N}$, which implies that $x_{k}=0$ for all $k \in \mathbb{N}$ so that $x=0$. This shows that T is injective.

(2 points)

Let $y=\left(y_{1}, y_{2}, \ldots\right) \in \ell^{1}$ and set $x=\left(x_{1}, x_{2}, \ldots\right)$ by $x_{k}=y_{1}+\cdots+y_{k}$, then $T x=y$ and

$$
\|x\|_{X}=\left|x_{1}\right|+\sum_{k=1}^{\infty}\left|x_{k+1}-x_{k}\right|=\left|y_{1}\right|+\sum_{k=1}^{\infty}\left|y_{k+1}\right|=\|y\|_{1}<\infty,
$$

which shows that $x \in X$. Therefore, T is surjective. The equality $\|T x\|_{1}=\|x\|_{X}$ for all $x \in X$ is trivial.
(3 points)
(c) Let x^{n} be a Cauchy sequence in $\left(X,\|\cdot\|_{X}\right)$ and set $y^{n}=T x^{n}$. Let $\epsilon>0$ be arbitrary, then there exists $N \in \mathbb{N}$ such that

$$
m, n \geq N \quad \Rightarrow \quad\left\|y^{n}-y^{m}\right\|_{1}=\left\|T\left(x^{n}-x^{m}\right)\right\|_{1}=\left\|x^{n}-x^{m}\right\|_{X} \leq \epsilon,
$$

which shows that y^{n} is a Cauchy sequence in $\left(\ell^{1},\|\cdot\|_{1}\right)$.
(4 points)

Since $\left(\ell^{1},\|\cdot\|_{1}\right)$ is complete there exists $y \in \ell^{1}$ such that $\left\|y^{n}-y\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$. Now let $x=T^{-1} y$, then since T^{-1} is also isometric we have

$$
\left\|x^{n}-x\right\|_{X}=\left\|T^{-1}\left(y^{n}-y\right)\right\|_{X}=\left\|y^{n}-y\right\|_{1} \rightarrow 0 .
$$

(6 points)
(d) Consider the sequence $x^{n}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, 0,0, \ldots\right)$. On the one hand we have

$$
\left\|x^{n}\right\|_{1}=\sum_{k=1}^{n} \frac{1}{k} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

On the other hand we have

$$
\left\|x^{n}\right\|_{X}=1+\left|\frac{1}{2}-1\right|+\left|\frac{1}{3}-\frac{1}{2}\right|+\cdots+\left|\frac{1}{n}-\frac{1}{n-1}\right|+\left|0-\frac{1}{n}\right|=2 .
$$

Therefore, there is no constant $C>0$ such that $\|x\|_{1} \leq C\|x\|_{X}$ for all $x \in \ell^{1}$. (3 points)

Solution of problem $2(6+4+4+4+7=25$ points $)$
(a) Solution 1. For all $x \in[0,1]$ we have that

$$
|T f(x)|=\left|\int_{0}^{1} e^{x-t} f(t) d t\right| \leq \int_{0}^{1} e^{x-t}|f(t)| d t \leq\|f\|_{\infty} \int_{0}^{1} e^{x-t} d t=\|f\|_{\infty} e^{x}\left(1-e^{-1}\right)
$$

Taking the supremum over all $x \in[0,1]$ gives

$$
\|T f\|_{\infty}=\sup _{x \in[0,1]}|T f(x)| \leq(e-1)\|f\|_{\infty},
$$

which shows that T is a bounded operator.

(3 points)

Also note that for any $f \in X$ we have $T f \in \operatorname{span}\left\{e^{x}\right\}$, which shows that $\operatorname{dim} \operatorname{ran} T=1$. Together with the boundedness of T this implies that T is a compact operator.

(3 points)

Solution 2. Recall the following theorem from the lecture notes: if $K:[a, b] \times$ $[a, b] \rightarrow \mathbb{K}$ is a continuous function, then the Fredholm operator

$$
T: X \rightarrow X, \quad T f(x)=\int_{a}^{b} K(x, t) f(t) d t
$$

is a compact operator. Clearly, the function $K(x, t)=e^{x-t}$ satisfies the hypothesis of this theorem.

(6 points)

(b) Solution 1. Since T is compact and X is infinite-dimensional a theorem of the lecture notes guarantees that $0 \in \sigma(T)$.
(4 points)
Solution 2. Since $\operatorname{dim} \operatorname{ran} T=1$ and X is infinite-dimensional we have that $\operatorname{ran} T$ is not dense in X. This means that $0 \notin \rho(T)$, or, equivalently, $0 \in \sigma(T)$.

(4 points)

Solution 3. Let $f \in X$ be nontrivial and satisfy $\int_{0}^{1} f(t) d t=0$. For example, let $f(x)=x-\frac{1}{2}$. Then the function $g(x)=e^{x} f(x)$ belongs to ker T. This implies that $0 \in \sigma_{p}(T) \subset \sigma(T)$.
(4 points)
(c) Note that for any f we have that $T f=\beta e^{x}$ where $\beta=\int_{0}^{1} e^{-t} f(t) d t$ is a constant depending on f. If $T f-\lambda f=g$, then $f=T f / \lambda-g / \lambda$ and f is necessarily of the form $f=\alpha e^{x}-g / \lambda$, where $\alpha=\beta / \lambda$.
(4 points)
(d) Computing $f=(T-\lambda)^{-1} g$ means finding $f \in X$ such that $T f-\lambda f=g$. Part (c) implies that there exists a constant $\alpha \in \mathbb{K}$ such that $f(x)=\alpha e^{x}-g(x) / \lambda$. In this case the equation $T f-\lambda f=g$ reads as

$$
\int_{0}^{1} e^{x-t}\left(\alpha e^{t}-\frac{g(t)}{\lambda}\right) d t-\lambda \alpha e^{x}+g(x)=g(x)
$$

or, equivalently,

$$
\alpha=-\frac{1}{\lambda(\lambda-1)} \int_{0}^{1} e^{-t} g(t) d t .
$$

This gives

$$
(T-\lambda)^{-1} g=-\frac{1}{\lambda} g(x)-\frac{1}{\lambda(\lambda-1)} \int_{0}^{1} e^{x-t} g(t) d t
$$

(4 points)

(e) Note that for $\lambda \notin\{0,1\}$ the operator

$$
S_{\lambda}=-\frac{1}{\lambda}-\frac{1}{\lambda(\lambda-1)} T
$$

is well-defined and bounded since it is a linear combination of two bounded operators (namely the identity and T). A straightforward computation shows that

$$
(T-\lambda) S_{\lambda}=S_{\lambda}(T-\lambda)=I,
$$

which means that $(T-\lambda)^{-1}=S_{\lambda} \in B(X)$ for all $\lambda \notin\{0,1\}$. This implies $\mathbb{K} \backslash\{0,1\} \subset \rho(T)$.

(5 points)

Since $\{0,1\} \subset \sigma(T)$ we have in fact that $\rho(T)=\mathbb{K} \backslash\{0,1\}$ and $\sigma(T)=\{0,1\}$. (2 points)

Solution of problem $3(5+3+7+5=20$ points)
(a) Alternative 1. Let X be a complete metric space and let $O \subset X$ be nonempty and open. Then O is nonmeager.
(5 points)
Alternative 2. A complete metric space cannot be written as the countable union of nowhere dense subsets.
(5 points)
(b) Note that $\mathcal{S}_{n}=\left\{x \in \mathcal{S}: x_{k}=0\right.$ for all $\left.k \geq n\right\}$ is a finite-dimensional subspace of the normed linear space \mathcal{S}. This implies that \mathcal{S}_{n} is closed.
(3 points)
(c) We need to prove that int $\overline{\delta_{n}}=\emptyset$, or, equivalently, since \mathcal{S}_{n} is closed, that $\operatorname{int} S_{n}=\emptyset$.
(2 points)
If $x \in \operatorname{int} \mathcal{S}_{n}$ then there exists $\varepsilon>0$ such that

$$
\{y \in \mathcal{S}:\|y-x\|<\varepsilon\} \subset \mathcal{S}_{n} .
$$

Let $z \in \mathcal{S}$ be nonzero and define $\widetilde{z}=x+\frac{1}{2} \varepsilon z /\|z\|$ then

$$
\|\widetilde{z}-x\|=\frac{1}{2} \varepsilon,
$$

which implies that $\widetilde{z} \in \mathcal{S}_{n}$. In turn, this implies that

$$
z=\frac{2\|z\|}{\varepsilon}(\widetilde{z}-x) \in \mathcal{S}_{n}
$$

so that $\mathcal{S}=\mathcal{S}_{n}$, which is a contradiction. Hence, int $\mathcal{S}_{n}=\emptyset$.
(5 points)
(d) If \mathcal{S} is a Banach space, then it is also a complete metric space. Since

$$
\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n}
$$

it would follow from Baire's theorem that at least one of the sets \mathcal{S}_{n} is not nowhere dense. This contradicts the conclusion of part (c). Hence, we conclude that \mathcal{S} is not a Banach space.

(5 points)

Solution of problem $4(4+6=10$ points $)$
(a) For $x \in X$ the Cauchy-Schwarz inequality gives $\left|f_{v}(x)\right|=|(x, v)| \leq\|x\|\|v\|$, which implies that

$$
\sup _{x \neq 0} \frac{\left|f_{v}(x)\right|}{\|x\|} \leq\|v\| .
$$

(3 points)

For $x=v$ we have

$$
\frac{\left|f_{v}(x)\right|}{\|x\|}=\frac{|(v, v)|}{\|v\|}=\|v\| .
$$

Hence, $\left\|f_{v}\right\|=\|v\|$.
(1 point)
(b) For any $x \in X$ there exists a constant $M_{x} \geq 0$ such that

$$
\left|f_{v}(x)\right|=|(x, v)|=|(v, x)| \leq M_{x}
$$

which implies that

$$
\sup _{v \in V}\left|f_{v}(x)\right|<\infty \quad \text { for all } x \in X
$$

(3 points)

By part (a) and the uniform boundedness principle we have

$$
\sup _{v \in V}\|v\|=\sup _{v \in V}\left\|f_{v}\right\|<\infty
$$

which implies that the set V is bounded.
(3 points)

Problem 5 ($4+6=10$ points $)$
(a) For $f, g \in X^{\prime}$ and $\lambda, \mu \in \mathbb{K}$ we have

$$
F_{x}(\lambda f+\mu g)=(\lambda f+\mu g)(x)=\lambda f(x)+\mu g(x)=\lambda F_{x}(f)+\mu F_{x}(g),
$$

which shows that $F_{x}: X^{\prime} \rightarrow \mathbb{K}$ is a linear map.

(2 points)

We have

$$
\left\|F_{x}\right\|=\sup _{f \in X^{\prime}, f \neq 0} \frac{\left|F_{x}(f)\right|}{\|f\|}=\sup _{f \in X^{\prime}, f \neq 0} \frac{|f(x)|}{\|f\|}=\|x\|,
$$

where the last equality is a consequence of the Hahn-Banach theorem.
(2 points)
(b) The operator $J: X \rightarrow X^{\prime \prime}$ is an isometry and hence injective. This means that $J(X)$ is a copy of X inside $X^{\prime \prime}$. Set $\widetilde{X}=\overline{J(X)}$. Since $X^{\prime \prime}$ is a Banach space and \widetilde{X} is closed in $X^{\prime \prime}$ it follows that \widetilde{X} is a Banach space. If x_{n} is a Cauchy sequence in X, then $J x_{n}$ is a Cauchy sequence in \widetilde{X} (since J is isometric) and hence convergent. In this way, every Cauchy sequence in X has a limit in the larger space \widetilde{X} and hence the latter space can be considered as a completion of X. (6 points)

